top of page

Publications

Tunable effective masses of magneto-excitons in two-dimensional materials

Andrey Chaves, and F. M. Peeters

Solid State Communications 334–335, 114371

2021

arXiv.org
Acess article

Abstract

Excitonic properties of Ge2H2 and Sn2H2, also known as Xanes, are investigated within the effective mass model. A perpendicularly applied magnetic field induces a negative shift on the exciton center-of-mass kinetic energy that is approximately quadratic with its momentum, thus pushing down the exciton dispersion curve and flattening it. This can be interpreted as an increase in the effective mass of the magneto-exciton, tunable by the field intensity. Our results show that in low effective mass two-dimensional semiconductors, such as Xanes, the applied magnetic field allows one to tune the magneto-exciton effective mass over a wide range of values.

logo.png

Physics | Federal University of Ceará

Department of Physics

Pici Campus - Block 922
60.455-970 Fortaleza (CE) Brazil

Physics Graduate Program

Telephone: +55 (85) 3366 9906
email: posgrad@fisica.ufc.br

Bachelor's degree in Physics

Telephone: +55 (85) 3366 9485

email: coordenacaobacharelado@fisica.ufc.br
 

Licentiate degree in Physics

Telephone: +55 (85) 3366 9485

email: coordenacao-licenciatura@fisica.ufc.br

  © 2020 Condensed Matter Theory Group - Department of Physics of Federal University of Ceará

Useful Links

Brasao4_vertical_cor_300dpi.png
capes-72012-RGB-1024x939.png
cnpq-logo-7.png
funcap.png

For Members

bottom of page